

Data-Driven Radial Compressor Design Space Mapping

James Brind Whittle Laboratory University of Cambridge jb753@cam.ac.uk

ASME Turbo Expo 2024 Paper No. GT2024-123250

Preliminary design locks in performance

Most important early decisions are informed by lowest-fidelity methods

Compromises in preliminary design — Smith chart

Smith, S.F. (1965). "A Simple Correlation of Turbine Efficiency." *Aeronaut. J.* Vol. 69, No. 655, p. 467–470.

Compromises in preliminary design — Smith chart

Smith, S.F. (1965). "A Simple Correlation of Turbine Efficiency." *Aeronaut. J.* Vol. 69, No. 655, p. 467–470.

In this talk

New tools for design space mapping

$$\eta = \operatorname{func}(PR_{\operatorname{tt}}, \phi_1, Ma_1^{\operatorname{rel}}, HTR_1, DH, \alpha_2^{\operatorname{rel}}, C_{\Gamma}, \tau)$$

fitted to RANS solutions of 3700 radial compressors spanning the 8D design space

New physical understanding

Two mechanisms drive efficiency trends

Constructing a radial compressor design space map

TURBIGEN open-source design system

Radial compressor defined by eight design variables

Vaneless diffuser $V_3/V_2 = 0.75$ $\alpha_1 = 0^\circ$, $Ma_1^{\rm rel} < 1$, $Re_\ell = 5 \times 10^6$

RANS computations in Turbostream 3

- ► Compressible RANS solver, 2nd-order accurate
- Spalart-Allmaras turbulence model
- $\blacktriangleright\,$ H-mesh topology $\sim 2\times 10^6$ nodes
- One simulation \sim 10 min on A100 GPU
- \blacktriangleright Iterative loss/deviation correction \sim 1 hour

Note: TURBIGEN CFD solver is interchangeable

Take 3700 random samples over 8D design space

Design variable		Datum	Lower	Upper
Total-to-total pressure ratio	$PR_{\rm tt}$	2.0	1.5	3.5
Inlet flow coefficient	ϕ_1	0.6	0.35	1.0
Inlet relative Mach	$Ma_1^{ m rel}$	0.6	0.3	0.9
Inlet hub-to-tip ratio	HTR_1	0.5	0.2	0.8
Rotor de Haller	DH	1.0	0.6	1.4
Exit relative yaw angle	$\alpha_2^{\mathrm{rel}}/^{\circ}$	-60	-80	-20
Circulation coefficient	C_{Γ}	0.6	0.4	1.0
Tip clearance span fraction	au/%	1.0	0.5	5.0

Latin hypercube — one sample in each equally probable row and column

Polynomial regression to fit the design space

$$\eta_{\mathrm{tt}}(\mathbf{x}) = \sum_{j} c_{j} \prod_{i} P_{k_{ij}}(x_{i})$$
 where

 $x_i =$ vector of independent variables

- $c_j = \text{coefficient vector least-squares fitted to data}$
- $P_k =$ Legendre polynomial of order k
- $k_{ij} =$ matrix of polynomial orders, all combinations summing $\leq k_{\max}$

 $k_{\mathrm{max}}=3$ yields a root-mean-square test error of 1.2% η_{tt}

Fitted efficiency is consistent with Cordier line

Cordier, O. (1953). "Ähnlichkeitsbedingungen für Strömungsmaschinen." BWK Bd Vol. 6(10) pp. 337-340

11 of 23

Loss mechanisms governing efficiency trends

Efficiency metrics for loss mechanisms

Mixing loss in casing separations

$$\Delta \eta_{
m mix} \propto \dot{m}\overline{s} - \int s \,\mathrm{d}\dot{m}$$

 $\overline{s} =
m mixed-out \ entropy$

Methodology for loss mechanism study

- Calculate 8D polynomial fits for $\Delta \eta_{tt}$, $\Delta \eta_{srf}$, and $\Delta \eta_{mix}$
- ► Start with a datum compressor at the centre of the design space
- ► Vary each design variable in turn, holding others constant
- ► Plot *changes* in *lost* efficiency with respect to the datum compressor
- Trends in approximate metrics $\Delta \eta_{srf}$ and $\Delta \eta_{mix}$ explain trends in actual $\Delta \eta_{tt}$

Flow coefficient primarily affects surface dissipation

Surface dissipation dominates at high hub-to-tip ratio

Design variable		Lower	Upper
Inlet flow coefficient	ϕ_1	surf	surf
Inlet relative Mach	Ma_1^{rel}	surf	mix
Inlet hub-to-tip ratio	HTR_1	mix	surf
Rotor de Haller	DH		
Exit relative yaw angle	$\alpha_2^{ m rel}/^{\circ}$		
Circulation coefficient	C_{Γ}		

Efficiency as function of exit velocity triangle

Surface dissipation and mixing losses set boundaries

Surface dissipation captures number of blades effect

Design variable		Lower	Upper
Inlet flow coefficient	ϕ_1	surf	surf
Inlet relative Mach	Ma_1^{rel}	surf	mix
Inlet hub-to-tip ratio	HTR_1	mix	surf
Rotor de Haller	DH	mix	surf
Exit relative yaw angle	$\alpha_2^{\mathrm{rel}}/^{\circ}$	surf	mix
Circulation coefficient	C_{Γ}	surf	mix

- Large ensembles of automated designs and simulations provide a higher-fidelity replacement for legacy empirical correlations in preliminary design
- CFD-based design space map for 3700 radial compressors is consistent with the Cordier line; 8D polynomial surface fit yields a test RMS error of 1.2% efficiency
- Aerodynamic optimum mean-line design is set by a balance of surface dissipation in boundary layers and mixing losses in casing separations

Interactive radial compressor designer at https://whittle.digital/rcd TURBIGEN code, documentation and examples at https://turbigen.org

Appendix

Curvature-continous splines for camber and thickness

Optimise axial length to minimise integrated curvature

Iterative post-processing to match design intent

Crossvalidation to select 8D polynomial order

Optimum Mach number rises with pressure ratio

Flow coefficient sets area-velocity tradeoff

Ranking of design variables by peak-to-peak efficiency

Design variable		η_{tt} range	Low	High
Exit relative yaw angle	$\alpha_2^{ m rel}/^{\circ}$	8.4%	srf	mix
Inlet relative Mach	Ma_1^{rel}	7.7%	srf	mix
Inlet hub-to-tip ratio	HTR_1	4.6%	mix	srf
Tip clearance	au	3.8%		—
Circulation coefficient	C_{Γ}	3.5%	srf	mix
Rotor de Haller	DH	3.0%	mix	srf
Inlet flow coefficient	ϕ_1	1.3%	srf	srf

Random sampling

Latin hypercube sampling

Comparison to Casey and Robinson (2023)

Whittle Laboratory Casey, M. and Robinson, C. (2023). "Some Properties of the Exit Velocity Triangle of a Radial Compressor Impeller". J. Turbomach. 145(5)

11 of 11