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Preliminary design locks in performance

Most important early decisions are informed by lowest-fidelity methods
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Compromises in preliminary design — Smith chart
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In this talk

New tools for design space mapping

η = func
(
PRtt, ϕ1, Marel

1 , HTR1,

DH , αrel
2 , CΓ, τ

)

fitted to RANS solutions of
3700 radial compressors

spanning the 8D design space

New physical understanding

Two mechanisms drive efficiency trends
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Constructing a radial compressor design space map



TURBIGEN open-source design system

OH-mesh

Turbostream 4

...

Turbostream 3

CFD solverMeshGeometryMean-lineInlet

...
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Radial compressor defined by eight design variables

Design variable
Total pressure ratio PRtt = p03/p01

Inlet flow coefficient ϕ1 = Vx1/U1

Inlet relative Mach Marel
1 = V rel

1 /a1

Inlet hub-to-tip ratio HTR1 = rh1/rt1

Rotor de Haller DH = V rel
2 /V rel

1

Exit relative yaw angle αrel
2 /◦

Circulation coefficient CΓ =
∮
V reldℓ/V rel

1 ℓ

Tip clearance/span τ/%

Vaneless diffuser V3/V2 = 0.75
α1 = 0◦, Marel

1 < 1 , Reℓ = 5× 106

7 of 23Coull, J.D. and Hodson, H.P. (2012) “Blade Loading and Its Application in the
Mean-Line Design of Low Pressure Turbines.” J. Turbomach. Vol. 135 No. 2.



RANS computations in Turbostream 3

▶ Compressible RANS solver, 2nd-order accurate
▶ Spalart-Allmaras turbulence model
▶ H-mesh topology ∼ 2× 106 nodes
▶ One simulation ∼ 10 min on A100 GPU
▶ Iterative loss/deviation correction ∼ 1 hour

Note: turbigen CFD solver is interchangeable Inlet

Outlet
Set by PID
to target

Wall function
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Take 3700 random samples over 8D design space

Design variable Datum Lower Upper
Total-to-total pressure ratio PRtt 2.0 1.5 3.5
Inlet flow coefficient ϕ1 0.6 0.35 1.0
Inlet relative Mach Marel

1 0.6 0.3 0.9
Inlet hub-to-tip ratio HTR1 0.5 0.2 0.8
Rotor de Haller DH 1.0 0.6 1.4
Exit relative yaw angle αrel

2 /◦ -60 -80 -20
Circulation coefficient CΓ 0.6 0.4 1.0
Tip clearance span fraction τ/% 1.0 0.5 5.0

Latin hypercube — one sample in each equally probable row and column
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Polynomial regression to fit the design space

ηtt(x) =
∑

j

cj
∏

i

Pkij (xi) where

xi = vector of independent variables
cj = coefficient vector least-squares fitted to data
Pk = Legendre polynomial of order k
kij = matrix of polynomial orders, all combinations summing ≤ kmax

kmax = 3 yields a root-mean-square test error of 1.2% ηtt
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Fitted efficiency is consistent with Cordier line

11 of 23Cordier, O. (1953). “Ähnlichkeitsbedingungen für Strömungsmaschinen.”
BWK Bd Vol. 6(10) pp. 337-340



Loss mechanisms governing efficiency trends



Efficiency metrics for loss mechanisms

Surface dissipation in boundary layers

const.

Mixing loss in casing separations

mixed-out entropy
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Methodology for loss mechanism study

▶ Calculate 8D polynomial fits for ∆ηtt, ∆ηsrf , and ∆ηmix

▶ Start with a datum compressor at the centre of the design space
▶ Vary each design variable in turn, holding others constant
▶ Plot changes in lost efficiency with respect to the datum compressor
▶ Trends in approximate metrics ∆ηsrf and ∆ηmix explain trends in actual ∆ηtt
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Effect of inlet Mach number on loss

CFD predictions
Loss coefficient,

increasing
Surface dissipation

Curvature increasing

Casing separation
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Flow coefficient primarily affects surface dissipation
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Surface dissipation dominates at high hub-to-tip ratio
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Design space boundaries for inlet variables

Design variable Lower Upper
Inlet flow coefficient ϕ1 surf surf
Inlet relative Mach Marel

1 surf mix
Inlet hub-to-tip ratio HTR1 mix surf
Rotor de Haller DH

Exit relative yaw angle αrel
2 /◦

Circulation coefficient CΓ
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Efficiency as function of exit velocity triangle
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Surface dissipation and mixing losses set boundaries
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Surface dissipation captures number of blades effect

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Circulation Coefficient, CΓ

−1

0

1

2

3

Lo
st

E
ffi

ci
en

cy
,∆

η
−

∆
η
∗ /

%

Nblade ∝ 1/CΓ← Asrf increasing

∆ηtt

∆ηsrf

∆ηmix

21 of 23



Design space boundaries for outlet variables

Design variable Lower Upper
Inlet flow coefficient ϕ1 surf surf
Inlet relative Mach Marel

1 surf mix
Inlet hub-to-tip ratio HTR1 mix surf
Rotor de Haller DH mix surf
Exit relative yaw angle αrel

2 /◦ surf mix
Circulation coefficient CΓ surf mix
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Conclusions

▶ Large ensembles of automated designs and simulations provide a higher-fidelity
replacement for legacy empirical correlations in preliminary design

▶ CFD-based design space map for 3700 radial compressors is consistent with the
Cordier line; 8D polynomial surface fit yields a test RMS error of 1.2% efficiency

▶ Aerodynamic optimum mean-line design is set by a balance of surface dissipation in
boundary layers and mixing losses in casing separations

Interactive radial compressor designer at https://whittle.digital/rcd
turbigen code, documentation and examples at https://turbigen.org
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Appendix



Curvature-continous splines for camber and thickness

χ̃(m) =
tanχ(m)− tanχ1

tanχ2 − tanχ1
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Optimise axial length to minimise integrated curvature

Axial length
increasing

Hub

Casing

Minimise
∫

hub
κ2 dl +

∫

casing
κ2 dl where curvature κ =

1

R
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Iterative post-processing to match design intent

Unstructured cuts at
leading and trailing egdes

Mix out at constant area, conserving:
mass, momentum, and energy

Create new geometry
Run CFD solver

Update mean-line efficiency guess
Recamber       for zero incidence
Recamber       to match design 

Loop until converged
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Crossvalidation to select 8D polynomial order
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Optimum Mach number rises with pressure ratio
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Flow coefficient sets area–velocity tradeoff
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Ranking of design variables by peak-to-peak efficiency

Design variable ηtt range Low High
Exit relative yaw angle αrel

2 /◦ 8.4% srf mix
Inlet relative Mach Marel

1 7.7% srf mix
Inlet hub-to-tip ratio HTR1 4.6% mix srf
Tip clearance τ 3.8% — —
Circulation coefficient CΓ 3.5% srf mix
Rotor de Haller DH 3.0% mix srf
Inlet flow coefficient ϕ1 1.3% srf srf

8 of 11



Random sampling
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Latin hypercube sampling
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Comparison to Casey and Robinson (2023)
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